
Gravito-inertial fields and the theory of a neutral particle

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1969 J. Phys. A: Gen. Phys. 2 257

(http://iopscience.iop.org/0022-3689/2/3/002)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 19:37

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0022-3689/2/3
http://iopscience.iop.org/0022-3689
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J .  P H Y S .  A ( G E N .  P H Y S . ) ,  1969 ,  S E R .  2 ,  V O L .  2 .  P R I K T E D  I N  G R E A T  B R I T A I N  

Gravito-inertial fields and the theory of a neutral particle 

H. G. L. COSTER and J. R. SHEPANSKI 
School of Physics, University of New South Wales, Sydney, Australia 
MS. received 22nd November 1968, in reaised form 23rd December 1968 

Abstract. The dynamics of a neutral particle is examined from the viewpoint of the 
theory of gravito-inertial fields. In particular, the concept of mass and the equivalence 
of the inertial and gravitational mass of a body are analysed here in more detail, 
suggesting a special mass structure for a fundamental particle. 

In close parallel with the treatment by Rohrlich of the Abraham-Lorentz theory 
of the electron, it is shown that the field equations lead to the correct relativistically 
invariant energy and momentum relationships. 

1. Introduction 
It has been shown in a previous publication (Coster and Shepanski 1969) that a body 

moving relative to the observer may be regarded as producing an inertial field of strength 9, 
in addition to the gravitational field Sa. This inertial field is analogous to the magnetic 
field of a moving charge. The combined gravito-inertial field is then described by a set of 
(Maxwellian type) field equations : 

a 9  1 
(i) V x  Sa = 6,- (iii) V . Sa = - - p g  

at En 

M 
(ii) V x 9  = j , - E o -  (iv) V . 9  = 0 

at 

and the momentum density TC, associated with the body, can be identified as 

aSa 
at 

x = vx9++, - - - .  

In  the above equation, p g  is the gravitational mass density, j ,  is the mass current density 
and cto and 6, are, respectively, the gravitational permittivity and the inertial permeability 
of free space. 

The  gravito-inertial field may also be expressed in terms of a scalar potential t/Jg and a 
vector potential Yi: 

(3) 
aaY 
at 

(i) ~a = -v+ +-i (ii) I = = v XY,. 

For a body having a mass m,, measured in its own rest frame, and moving with a velocity 
U relative to the observer, the retarded potentials z,hg and Y, are given by 

1 1 6, U 
(i) z,hg = - - m0 (ii) Yi = - m  0 47~ r - r . u / c ’  47Tcto Y - r . u/c’ (4) 

where r is the position vector of the observer. 
The mass variation with speed, deduced by an observer and predicted by the special 

theory of relativity, was shown to arise purely from the propagation of the gravito-inertial 
field. The  field equations impose an upper limit on the speed of the body, equal to the 
propagation speed c’ = ( x , S , ) - ~ ! ~  of the gravito-inertial field and further considerations 
show that c’ must be equal to c. 
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The present paper is concerned primarily with the energy-momentum relations of the 
gravito-inertial field. It will be demonstrated that the Newtonian laws of motion for a 
slowly moving particle arise directly from the field equations (1). This treatment, when 
extended to the case of any velocity, leads to a completely consistent, and effectively rela- 
tivistic, theory of a neutral elementary particle and its dynamics. 

2. Gravito-inertial field energy 

we obtain for the energy densities of the gravitic and inertial field, respectively: 
By the well-known procedures employed in the analogous electromagnetic situation, 

(i) ag &xo g2 (ii) @i (5) 

M = - ( 9 x 3 ) .  (6) 

We can also identify the gravito-inertial equivalent of the electromagnetic Poynting vector as 

For a particle at rest the only contribution to its gravito-inertial field energy is that 
due to the gravitic field. 

The following analysis is restricted to an isolated (and neutral) elementary particle. 
The calculation is similar to that given by Abraham (see, e.g., Abraham 1920) for the electro- 
static self-energy of an electron. We shall assume here a spherically symmetric, but other- 
wise completely general, aolume distribution, p(r),  for the gravitational mass density, 
extending to a distance R. 

With the aid of equations (4(i)) and (3(i)), the total gravitic field energy Lrg is then given 

2 

LTg = 2 m 0  [r ~ ’ ~ p ( r ’ )  dr’) dr 
r = o r 2  I r ’=O 

+ f: { Y’~~(Y’) dr’ia dr] , 
r’=O 

Integrating by parts and using the fact that xoSo = 1/c2, one finds that 

For a particle at rest the term multiplying c2 in (7) is a function of the gravitational mass 
distribution. Its explicit form and its relationship to the inertial mass will be dealt with in 
the next section and the restriction, imposed on the behaviour of p(r), near Y = 0, by the 
convergence requirements of the integrals in (7) ,  will be discussed in a later section. 

3. Inertial reaction 
When a body is accelerated, the time variation of the vector potential produces a local 

gravitational field in a direction opposite to the acceleration. The resultant force due to 
this gravitic field must be counterbalanced by an external force in order to maintain the 
accelerated motion. This provides an immediate insight into the fundamental nature of 
inertia in a body. 

For a particle accelerated f yom rest, the reaction force is given by 

R 

F = - 1  9”(r)p(r)477r2 dr 
0 

where 9 * ( r )  is the induced gravitic field strength at a radial distance r and can be obtained 
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from equations (3(i)) and (4(ii)). Hence 

F = - 4 T 6 , [ r  (ir 
r = O  r ‘ = O  

(9) 

The reaction force is thus directly proportional to the acceleration, in agreement with 
the Newtonian law of mechanics, It follows from (9) that the inertial mass of the elementary 
particle is given by 

m, = 4 ~ 6 ,  j” [ I r  p ( ~ ’ ) r ’ ~  dr’ rp(r) dr. ( 10) i r = O  r ’=O 

This is precisely the factor which relates U, to c2 in (7) .  Thus, from the above analysis, 
we have that, for an external force F ,  

(11) 
Ug 

F = - U  , Ug = m1c2. 
2 

I t  should be noted that, while Ug and mi are structure dependent, through p(r),  the 
relationship between them is independent of the structure. 

4. The principle of equivalence and elementary particle structure 
By considering a particle in free fall and using the Galilean reductio ad absurdum argu- 

ment, we can conclude that mi is proportional to mg. As was shown, however, in our 
previous paper, this becomes an equality 

mi = mg = m. (12) 
The total rest energy of the particle, (7) and (ll), is now simply equal to me2. 

from equation (10) by noting that, since R is arbitrary, 
In  view of (12), a clue to the structure of our fundamental particle can now be gained 

1 

It is interesting to note that (13) represents precisely the limiting variation of mass 
density near the origin required by the convergence condition in the integrals in equations (7) 
and (9). 

Further, the gravitational potential energy V,  of the particle with this mass density 
distribution is such that - V ,  = U, = me2, that is the gravitational binding energy is 
identical with the rest energy. 

5. The gravito-inertial field tensor 
Before proceeding further with the dynamical analysis, it is convenient to cast the 

field equations into a covariant form. The theory of the gravito-inertial field, as shown in 
our previous work, leads to results which are, in all aspects, consistent with the special 
theory of relativity. Further, the invariance of the speed of propagation of the field shows 
that the field equations must be Lorentz invariant. Hence, we can introduce a metric 
tensor gJp, v = 0, 1, 2, 3) with signature + l ,  -1, -1, -1, without thereby invoking 
any results of the special theory of relativity. 

We now introduce the antisymmetric gravito-inertial field tensor Duv, defined by 
D U V  = p Y V  - Z V Y U  

where ‘F is a four-potential: 

whose components & and Yi are given by equations (4). 
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The components of Duv are given by the array 

1 
- 91 
C 

0 

13 

- 1 2  

1 
- 9 2  
C 

-13 

0 

I1 

6. The energy-momentum relations 

necessary to include the contributions due to the inertial field. 

energy-momentum tensor T which can be generated in the usual manner. Thus 

In  order to obtain the energy and momentum relations for non-zero velocities it is 

The  exact expressions required can be obtained most easily from the gravito-inertial 

Dll,,jy = - 8 L T U 
where jv ( jo ,  j )  = (cpg, j , )  is the four-current density. 

Substitution from (16) into equation (17) then yields 

where % = + ~ , 9 ~ +  & S O P  is the energy density of the field and JI/' is the gravito-inertial 
Poynting vector defined in equation (6). 

Following the treatment given by Rohrlich (1960) for the analogous problem in the 
classical theory of the electron, it is now possible to identify the energy and momentum 
due to the field of the particle as 

W =  
C 

( 9  

(ii) 

where 

and 
T =  ~ , E e E e + $ . o 9 9 - % 1  

y = (1 - $1 
For a particle in uniform motion 

so that, using the same mass density distribution function p(r)  as before, and on substituting 
equation (12), the momentum associated with the particle, given by equation (19), becomes 

9 =  - %(U x 



Gravito-inertial jields and the theory of a neutral particle 26 1 

Hence the theory gives a low-velocity momentum identical with the normal Newtonian 
concept. For a relativistic particle, the complete expressions (19) yield (following Rohrlich) 
the appropriate correct results : 

W =  mc2, P = mu 

m = m o j l - C 2 )  . 
where, however, 

u2 -1 i2  

4 treatment similar to the Abraham-Lorentz theory would yield the low-velocity 
momentum and energy: 

P = -- M d 3 X  = Qmiu 
C2 

(22) 
( 9  'i 
(ii) W =  [ @ d 3 X  = mic2. 

The inconsistencies between the relationships (22(i)) and (22(ii)) were removed by 
Rohrlich (1960) for the case of the electron, through a proper definition of momentum via 
the energy-momentum stress tensor. This latter approach not only avoids the undesirable 
4/3 factor in (22(i)), but also ensures the Lorentz invariance of the energy and momentum. 

For a free gravito-inertial field, the momentum density is given by 

I n  the presence of a moving field source, however, such as in the case of the particle 
considered above, the additional terms due to the gravito-inertial stresses must be included. 
The  latter are also connected with the probIem of the stability of the particle, which other- 
wise would disappear through a gravitational collapse. As Rohrlich has pointed out, when- 
ever the self-interaction can be separated from external interactions in a relativistically 
invariant manner, which is true for the definitions (19), instability problems can be removed 
by a renormalization. 

7. Conclusions 
I t  has been shown that a consistent description of a neutral elementary particle can be 

constructed on the basis of the gravito-inertial field theory. 
The  dynamics and, in particular, the very nature of the inertial mass of the particle are 

completely described in terms of the gravito-inertial field. The  latter itself is specified 
solely in terms of the concept of gravitational mass. 
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